skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu Chen, Johnny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    In this study, we show how strong metal–support interaction (SMSI) oxides in Pt–Nb/SiO 2 and Pt–Ti/SiO 2 affect the electronic, geometric and catalytic properties for propane dehydrogenation. Transmission electron microscopy (TEM), CO chemisorption, and decrease in the catalytic rates per gram Pt confirm that the Pt nanoparticles were partially covered by the SMSI oxides. X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), and resonant inelastic X-ray scattering (RIXS) showed little change in the energy of Pt valence orbitals upon interaction with SMSI oxides. The catalytic activity per mol of Pt for ethylene hydrogenation and propane dehydrogenation was lower due to fewer exposed Pt sites, while turnover rates were similar. The SMSI oxides, however, significantly increase the propylene selectivity for the latter reaction compared to Pt/SiO 2 . In the SMSI catalysts, the higher olefin selectivity is suggested to be due to the smaller exposed Pt ensemble sites, which result in suppression of the alkane hydrogenolysis reaction; while the exposed atoms remain active for dehydrogenation. 
    more » « less
  3. Recently, stable non-oxidative conversion of methane (NOCM) for up to 8 h with a C 2 selectivity greater than 90% has been reported over Pt–Bi/ZSM-5 at moderate temperatures (600–700 °C). In this study, we show that the structure of the bimetallic nanoparticles on Pt–Bi/ZSM-5 catalyst is similar to Pt–Bi/SiO 2 . EXAFS indicates the formation of Pt-rich bimetallic Pt–Bi nanoparticles with Pt–Bi bond distance of 2.80 Å. The XRD spectra (on SiO 2 ) are consistent with cubic, intermetallic surface Pt 3 Bi phase on a Pt core. The Pt 3 Bi structure is not known in the thermodynamic phase diagram. In all catalysts, only a small fraction of Bi alloys with Pt. At high Bi loadings, excess Bi reduces at high temperature, covering the catalytic surface leading to a loss in activity. At lower Bi loadings with little excess Bi, the Pt 3 Bi surface is effective for non-oxidative coupling of CH 4 (on ZSM-5) and propane dehydrogenation (on SiO 2 ). 
    more » « less